Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.18.572191

ABSTRACT

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.22.567930

ABSTRACT

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, theres a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.06.565765

ABSTRACT

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=166 HEIGHT=200 SRC="FIGDIR/small/565765v1_ufig1.gif" ALT="Figure 1"> View larger version (48K): org.highwire.dtl.DTLVardef@d49b9dorg.highwire.dtl.DTLVardef@347455org.highwire.dtl.DTLVardef@1c1a196org.highwire.dtl.DTLVardef@1579130_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
COVID-19
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.09.544432

ABSTRACT

SARS-CoV-2 has the capacity to evolve mutations to escape vaccine-and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool. Here, we challenged rhesus macaques with SARS-CoV-2 Delta and simultaneously treated them with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment gave equivalent protection in upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 did not block the development of memory responses to Delta and did not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.


Subject(s)
Severe Acute Respiratory Syndrome
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.25.485875

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.


Subject(s)
Severe Acute Respiratory Syndrome
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.06.479285

ABSTRACT

Background: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. Methods: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. Results: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. Conclusions: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.03.479037

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to antibody neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-specific vaccines would enhance immunity and protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing antibody titers against D614G were 4760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (pre-boost), respectively, and 320 and 110 for Omicron. Two weeks after boost, titers against D614G and Omicron increased to 5360 and 2980, respectively, for mRNA-1273 and 2670 and 1930 for mRNA-Omicron. Following either boost, 70-80% of spike-specific B cells were cross-reactive against both WA1 and Omicron. Significant and equivalent control of virus replication in lower airways was observed following either boost. Therefore, an Omicron boost may not provide greater immunity or protection compared to a boost with the current mRNA-1273 vaccine.

8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.26.477915

ABSTRACT

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants in non-human primates (NHPs). The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 4.3-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.


Subject(s)
Severe Acute Respiratory Syndrome
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.02.474743

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.


Subject(s)
Weight Loss , Respiratory Tract Infections
10.
Vaccine ; 39(45): 6601-6613, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1541007

ABSTRACT

AKS-452 is a biologically-engineered vaccine comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain antigen (Ag) and human IgG1 Fc (SP/RBD-Fc) in clinical development for the induction and augmentation of neutralizing IgG titers against SARS-CoV-2 viral infection to address the COVID-19 pandemic. The Fc moiety is designed to enhance immunogenicity by increasing uptake via Fc-receptors (FcγR) on Ag-presenting cells (APCs) and prolonging exposure due to neonatal Fc receptor (FcRn) recycling. AKS-452 induced approximately 20-fold greater neutralizing IgG titers in mice relative to those induced by SP/RBD without the Fc moiety and induced comparable long-term neutralizing titers with a single dose vs. two doses. To further enhance immunogenicity, AKS-452 was evaluated in formulations containing a panel of adjuvants in which the water-in-oil adjuvant, Montanide™ ISA 720, enhanced neutralizing IgG titers by approximately 7-fold after one and two doses in mice, including the neutralization of live SARS-CoV-2 virus infection of VERO-E6 cells. Furthermore, ISA 720-adjuvanted AKS-452 was immunogenic in rabbits and non-human primates (NHPs) and protected from infection and clinical symptoms with live SARS-CoV-2 virus in NHPs (USA-WA1/2020 viral strain) and the K18 human ACE2-trangenic (K18-huACE2-Tg) mouse (South African B.1.351 viral variant). These preclinical studies support the initiation of Phase I clinical studies with adjuvanted AKS-452 with the expectation that this room-temperature stable, Fc-fusion subunit vaccine can be rapidly and inexpensively manufactured to provide billions of doses per year especially in regions where the cold-chain is difficult to maintain.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Immunoglobulin G , Mice , Primates , Rabbits , Recombinant Fusion Proteins/immunology , SARS-CoV-2 , Vaccines, Subunit
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.23.465542

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ~3-log10 compared to control animals. In nasal swabs, sgRNA declined 1-log10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.19.464990

ABSTRACT

Emerging of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity poses threats to curbing the COVID-19 pandemic. An effective, safe, and convenient booster vaccine will be needed. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is hardest to cross-neutralize. Herein we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. One year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated one year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.


Subject(s)
COVID-19
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.24.461759

ABSTRACT

FDA-approved and Emergency Use Authorized (EUA) vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease, however, information on their long-term efficacy and protective breadth against SARS-CoV-2 Variants of Concern (VOCs) is currently scarce. Here we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], B.1.617 [Delta]) for at least 3 months after the final boost. Protective efficacy and post-exposure immunity were evaluated using a heterologous P.1 challenge nearly 3 months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Post-challenge IgG concentrations were restored to peak immunity levels and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (non-vaccinated but challenged) macaques suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide long-lasting and protective immunity against circulating VOCs. One Sentence SummaryA recombinant subunit protein formulated with CoVaccine HT adjuvant induces superior immunity than natural infection and reduces viral load while protecting cynomolgus macaques from COVID-19-like disease caused by late SARS-CoV-2 P.1 (Gamma) challenge.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.15.460487

ABSTRACT

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen Modified Vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.


Subject(s)
Lung Diseases , Weight Loss , Respiratory Tract Infections , COVID-19
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.13.460191

ABSTRACT

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Post-pyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that post-pyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. ImportanceSARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here we report that oral administration of live SARS-CoV-2 in non-human primates may offer prophylactic benefits, but that formulation and route of administration will require further optimization.


Subject(s)
Coronavirus Infections
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.30.21262666

ABSTRACT

Despite the success of SARS-CoV-2 vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of COVID-19. Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19, and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct non-overlapping epitopes on the spike protein receptor binding domain to potently neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and abrogate effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry. Together, these two mAbs create a higher barrier to viral escape and a wider breadth of coverage, neutralizing all known SARS-CoV-2 variants of concern. In a non-human primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, while therapeutic administration accelerated virus clearance from lung. In an ongoing Phase I study in healthy participants (NCT04507256), 300 mg intramuscular AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers >10-fold above those of convalescent sera for [≥]3 months, which remained 3-fold above those of convalescent sera 9 months post-AZD7442 administration. Approximately 1-2% of serum AZD7442 levels were detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentrations suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Subject(s)
COVID-19 , Death
17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456316

ABSTRACT

The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.

18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.456015

ABSTRACT

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.


Subject(s)
Severe Acute Respiratory Syndrome
19.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.16.452733

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 global pandemic. Vaccines are needed to control the disease and bring an end to the pandemic. SARS-CoV-2 is an enveloped RNA virus that relies on its trimeric surface glycoprotein, spike, for entry into host cells. Here we describe the COVID-19 vaccine candidate MV-014-212, a live attenuated, recombinant human respiratory syncytial virus (RSV) expressing a chimeric SARS-CoV-2 spike as the only viral envelope protein. MV-014-212 was attenuated and immunogenic in African green monkeys (AGMs). One mucosal administration of MV-014-212 in AGMs protected against SARS-CoV-2 challenge, reducing the peak shedding of SARS-CoV-2 in the nose by more than 200-fold. MV-014-212 elicited mucosal immunity in the nose and neutralizing antibodies in serum that exhibited cross neutralization against two virus variants of concern. Intranasally delivered, live attenuated vaccines such as MV-014-212 entail low-cost manufacturing suitable for global deployment. MV-014-212 is currently in phase I clinical trials as a single-dose intranasal COVID-19 vaccine.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections
20.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.13.452251

ABSTRACT

Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL